1. Materials	
2. Binders	1
3. Fillers	
4. Surfaces	3
5. Structures	3
6. Processes and phenomena	4
7. Factors	5
8. Properties	5
9. Technology	7
10.Design	7
11.Applications	8
12.Structures	8
13. Diagnostics	9
14.Prediction	9
15.Methods	9

1. Materials

Aramide-fibres-reinforced plastics (AFRP)

Biocomposites

Biodegradable composites

Biomaterials

Biomimetic composites

Biopolymers and renewable polymers

Bone

Bone tissues

Boron-fibres-reinforced plastics (BFRP)

Carbon-carbon composites (CCCS)

Carbon-fibres-reinforced plastics (CFRP)

Ceramic-matrix composites (CMCS)

Composites

Concretes

Fibresglass; glass-fibres-reinforced plastics

(GFRP)

Fibres-reinforced concretes

Flexible composites

Foam plastic

Hybrid composites

Laminates

Materials

Metal-matrix composites (MMCS)

Multifunctional composites

Nano composites

Particle-reinforced composites

Polymer concrete

Polymer-matrix composites

Polystyrene foam

Polyurethane foam

Reinforced concretes

Reinforced concretes

Short-fibres composites

Smart materials

Structural composites

Structural health monitoring (SHM)

Textile composites

2. Binders

Aminoaldehydes

Binders

Elastomers

Ероху

Fluoroplastics

Fluoropolymer

Furan Polyolefins Matrixes Polyoxazoles

Phenolformaldehyde Polyphenylene oxides
Poly(vinyl chloride) Polypropylenes
Poly(vinyldechloride) Polystyrenes
Polyacrylates Polysulfones

Polyamides Polytetrafluoroethylene (PTFE)

Polybutenes Polyurethanes
Polycarbonates Polyvinyl acetates
Polyesters Polyvinyl alcohols

Polyethylenes Resins
Polyimides Rubbers

Polymers Thermoplastic resins
Polymethylmethacrylate Thermosetting resins

3. Fillers

Aramid fibres Masterbatch

Basalt fibres Mats

Boron fibres Metal fibres
Calcium silicates Metal powders

Carbon fibres Mica

Carbon nanotubes Modified fibres

Carbon technical Montmorillonite clays

Ceramic fibres

Chalk

Chark

Coated fibres

Fabrics; textiles; cloth

Nano particles

Nanoclays

Nanocrystals

Nanowires

Nanowires

Natural fibres

Felt Nets

Fibres Optical fibres
Fillers Perlites
Films Pigments

Foils Polymer (textile) fibres

Fullerenes Profile fibres
Glass fibres Quartz; silica
Glass fillers Short fibres

Glass microspheres
Graphene
Strand
Graphite
Talc
Gypsum
Tapes
High modulus fibres
Thread
High-strength fibres
Whisker

Hollow fibres Whiskered fibres

Kaolin Yarns

Linen; canvas

4. Surfaces

Adherence; adhesion; coupling

Adhesive layers

Coatings

Composite coatings

Energy absorbing coatings

Fibres-matrix bonds

Film coatings

Fracture surfaces

Fracture surfaces

Glue coatings

Interfaces Interphases

Protective coatings

Slip; sliding

Surface conditions

Surface layers

Surfaces

Wear resistant coatings

Wettability

5. Structures

Amorphous structures

Angle-ply reinforcements Anisotropic structures

Bending defects Cellular structures

Chaotic reinforcements
Closed cell structures

Continuous reinforcements

Cracks

Crossed reinforcements

Cross-ply reinforcements

Crystal defects

Crystal structures

Defects

Delamination cracks
Discrete structures

Fatigue cracks
Flat reinforcements

Foams

Frame structures Glass defects

Glasses

Grid structures

Heterogeneous structures

Homogeneous structures

Honeycombs

Hybrid structures

Inclusion defects

Initial cracks
Interfacial defects
Isotropic structures

Lamina; ply

Laminates

Longitudinally-transverse reinforcements

Macrocracks

Macrodefects

Main crack

Microcracks

Microdefects

Microstructures

Molecular structures
Monotropic structures

Multilayered structures

Non-glue crack

Notches

Off-axis reinforcements

Open-cell structures

Orthotropic structures

Periodic structures

Piecewise homogeneous structures

Pores

Porous structures

Radiation defects

Reinforcement factor

Reinforcement factor by mass

Reinforcement factor by volume

Reinforcement factor by weight

Reinforcements

Sandwiches

Separation cracks

Silver cracks

Spatial reinforcements Spiral reinforcements Stochastic structures

Structures

Tetragonal structures

Thermal cracks

Thin films

Three-layer structures

Transversely isotropic structures

Two-layer structures

Unidirectional reinforcements

Winding structures

6. Processes and phenomena

Absorption Dynamic fatigue

Adhesion Emission
Adsorption Erosion
Ageing Fatigue
Artificial aging Fatigue
Atmospheric aging Fatigue

Bowschinger effect Fatigue fracture
Break Fibres bridging
Breakage Fibres pull-out
Brittle fracture Fracture

BucklingFragmentationBucklingFriction; tribologyClimatic agingGlass transitionCohesionHeat transferCompactionHysteresis

CorrosionInterlayer fractureCorrosion destructionLocal fractureCorrosion fatigueLong-term creepCrack growthLong-term fracture

Crack growth Loosening

Crack interaction Low-cycle fatigue
Cracking Mass transfer
Cracking Microfracture

Cracks accumulation Moisture absorption
Cracks retardation Neck formation
Creep Non-linear behaviour

Creep recovery Physicochemical Crosslinking Plastic fracture

Crystallization Processes and phenomena

Cutting Progressive failure Damage Quasi-brittle fracture **Damping** Radiation aging Debonding Relaxation **Deformations** Relaxation Delamination Resonance Desorption Retardation Destruction Rheology

Diffusion Short-term creep

Displacement Shrinkage
Ductile fracture Sorption

Spontaneous fracture

Static fatigue Steady creep Strengthening Stress relaxation

Swelling Tearing

Thermal aging
Thermal creep
Thermal cycling
Thermal destruction

Thermal fatigue
Thixotropy

Transverse cracking

Twisting
Unwinding
Vibro-creep
Warping
Water uptake
Weakening

Wear

7. Factors

Aggressive environments Constructive factors

Degradation Edge effects

Environmental degradations

Exposure times

Factors

Hygrothermal effects

Irradiation

Loading methods Loading rates Moisture Scale factors

Stress concentrations
Technological factors

Temperature Vacuum

8. Properties

Acoustic properties
Antifriction properties
Coefficients of brittleness
Coefficients of crystallization
Coefficients of elasticity

Coefficients of elasticity dynamic Coefficients of elasticity static

Coefficients of heat transfer Coefficients of melting

Coefficients of thermal conductivity Coefficients of thermal diffusivity Coefficients of thermal expansion

Coefficients of viscosity Complex elastic modulus

Compliance
Compressibility
Compressive strength
Conversion rates
Corrosion resistances

Complex moduli

Creep curves

Critical length
Cyclic strength
Damage tolerance
Damageability

Damping coefficients

Damping decrements

Deformability

Deformations; strains
Degree of conversion

Density

Diffusion coefficients

Durability Durability

Dynamic elastic modulus

Dynamic strength
Effective properties
Elastic constants
Elastic limits
Elastic modulus
Elastic strains
Elasticity

Elastic-plastic strains Properties

Electrical properties

Electroelasticity

Embrittlement

Endurance

Energy

Energy

Equilibrium moisture contents

Erosion resistances

Radiation resistances

Relaxation times

Residual life

Residual strains

Residual strength

Residual stresses

Fatigue life Residual stresses
Fatigue limits Retardation spectrums
Fatigue strength Retardation times
Fluidity Rheological properties

Fracture energy Safety factors

Fracture energy Secant elastic modulus

Fracture toughness Shear strains
Friction coefficients Shear strength
Frost resistance Small strains
Glass transition coefficients Softening factors

Hardness Spectrum of relaxation times

Heat capacity

Heat resistance

Highelasticity

Static strength

Stiffness

Strength

Highly elastic strains

Strength

High-temperature properties Stress intensity factors
Impact strength Stress-strain curves
Impact strength Synergism

Inelasticity Tangent elastic modulus Interfacial strength Technological properties

Interlaminar stresses Technological stresses
Internal friction; damping Tensile strength

Large strains Thermal activation coefficients

Limit of endurance Thermal conductivity
Limit of proportionality Thermal diffusivity
Logarithmic decrement Thermal expansion
Loss angles Thermal properties

Magnetic properties Thermomechanical properties

Mass Thermophysical properties
Mechanical losses factors Torsional strength

Mechanical properties

Microhardness

Moisture permeability

Torsional strength

Transport properties

Ultimate strains

Viscoelasticity

Normal strains Viscoplasticity
Operating properties Viscosity

Optical properties Viscous strains

Permeability Viscous-plastic strains

Plastic strains

Plasticity

Porosity

Volume strains

Water permeability

Wear resistance

Yield coefficients Yield strength

Young's modulus

9. Technology

3-d printing Moulding **Plasticizer Annealing Autoclave Prepreg**

Braiding Programmed winding

Circumferential winding Pultrusion

Compression moulding Reaction injection moulding (RIM)

Cross winding Recycling

Curing Reinforcement placement Extrusion Resin film infiltration (RFI) **Filling** Resin transfer moulding (RTM)

Semifinished **Forming** Heat treatment Stabilization

Stacking sequence Impregnation

Injection moulding Stitching

Kinematics of winding Surface treatments

Knitting Technological equipment

Liquid composite moulding Technology Longitudinal-circumferential winding **Treatment** Machining Vacuum infusion

Magnetic treatment Welding; joining

Microwave processing Winding

Modification Winding conditions

10.Design

Molding; casting

Actual models Fracture surfaces

Analytical models Load-bearing capacity optimizations

Analytical solutions Local stability

Axisymmetric stability Longitudinal stability Bending stability Mass optimizations Boundary-value problems Material optimizations

Composite models Mathematical models Constitutive equations Multipurpose optimizations Criterion functions Nonaxisymmetric stability

Deformation surfaces Numerical solutions Design Optimization criterion

Design optimizations Optimization of structural elements

Dynamic stability **Optimizations**

Optimizations of crack resistance Elasticity theory

Failure criterion Optimizations of durability Finite element models Optimizations of reliability

Optimizations of stability Orientational averaging

Physical models
Plate theory

Process optimizations Representative elements Response surfaces

Restrictions on optimizations

Safety factors Shell theory Stability

Stability criterion Stability overall Static stability

Stiffness optimizations Strength criterion Strength optimizations Strength surfaces Stress concentrations

Stress-strain states Structural elements Structural models

Theory of layered composites

Torsional stability
Transverse stability
Yield surfaces

11. Applications

Aerospace applications

Applications

Automotive applications

Civil engineering Composite repair Marine applications
Rail applications
Renewable energy
Sport applications

12.Structures

Adhesive joints

Anisotropic shells
Articulated supports

Assembled shell

Axisymmetric shells

Beams

Bolted joints
Butt joints

Carrier elements
Casing with cut-outs
Cellular shells
Clamping

Combination supports Compound structures

Conical shells Cylindrical shells

Deflections

Durability Ellipsoidal shells Energy intensity

Flywheels
Forced vibrations

Free supports

Free vibrations Heterogeneity

Joints

Load-carrying capacity

Membranes

Natural frequency
Oil and gas structures

Pipelines
Pipes
Plates
Products

Rectangular shells Reinforced shells

Repair

Resonance vibrations Resonant frequency

Resources Rings

Riveted joints Rod systems

Rods

Sandwich structures

Shallow shell

Shells

Spherical shells

Structural elements

Structures

Support conditions

Thick-walled constructions

Thick-walled shells

Thin-walled constructions

Thin-walled shells

Torus shells

Triangular shells

Turbine blades

Welded joints

Working capacity

13. Diagnostics

Defectoscopy

Delivery-delivery diagnostics

Destructive testing

Diagnostics

Diagnostics during operation

Diagnostics in manufacturing

Material diagnostics

Non-destructive testing

Product diagnostics

Semi-destructive testing

14.Prediction

Aging forecasting

Analogy methods

Baro-time analogy

Concentration-time analogy

Deformation-time analogy

Elastic-viscous analogy

Extrapolation

Forecasting methods

Life prediction

Master curves

Moisture-time analogy

Multifactorial forecasting Multi-parameter prediction Polarization-time analogy

Prediction

Prediction of properties

Radiation-time analogy

Stress-time analogy

Temperature-time analogy

Time reduction function

Vibro-time analogy

15. Methods

Accelerated tests

Acoustic emission

Acoustic methods

Analytical analysis

Analytical modelling

Atomic force microscopy (AFM)

Ballistic tests

Biaxial loading

Chromatography

Complex loading

Compression

Computational mechanics

Computational modelling

Continuous loading

Control tests

Crumpling

Cut

Cyclic loading

Damage mechanics

Differential scanning calorimetry (DSC)

Digital image correlation

Dilatometry

Dynamic loading

Dynamic mechanical thermal analysis

(DMTA)

Electric methods

Electron energy loss spectroscopy (EELS) Electron microprobe analysis

Experiment planning

Explosion External pressure

Finite element analysis (FEA)

Finite element methods

Flexure; bending

Fractography

Hardness testing

High-speed impact

Holography

Hydrostatic pressure

Impact

Indentation

Infrared spectroscopy (IR) Interlayer shear

Internal pressure

Loading

Low-speed impact

Magnetic methods

Mechanicoluminescence

Methods

Micro-mechanics

Microscopy

Modelling

Moire techniques

Multiscale modelling Numerical analysis

Optical methods

Optical microscopy Penetration methods

Photoelectron spectroscopy (XPS)

Phase analysis

Physical methods Probabilistic methods

Product testing

Pulsed loading

Qualitative analysis

Radio wave methods

Raman spectroscopy

Repeated loading

Sample tests

Scanning electron microscopy (SEM)

Scanning/transmission electron microscopy

(STEM)

Secondary ion mass spectrometry (SIMS)

Self-consistency methods

Shear

Simple loading

Spectroscopy

Static loading

Statistical analysis

Structural analysis

Tension

Test equipments

Testing the models

Thermogravimetric analysis (TGA)

Thermophysical methods

Three-axle load

Torsion

Transmission electron microscopy (TEM)

Transverse compression

Transverse shear

Ultrasonics

Uniaxial loading

Variable loading

Vibration

Vibration

X-ray diffraction (XRD)

X-ray fluorescence (XRF)